Tutorial: RTM image enhancement; bad models and mad physics

Ian F. Jones1*, Marcin Kobylarski1 and John Brittan1

Abstract
The final stage of a shot-based migration process is usually the imaging condition, which brings together elements of the upcoming and downgoing wavefield for each shot gather in order to form an image contribution. This procedure suffers limitations owing to the approximations made in representing the physics of the system, and in addition to that, the final summation of all shot contributions necessarily assumes that the subsurface parameter model was perfect, such that all image contributions align perfectly for summation (within a Fresnel zone), as well as ideally having recorded data that are noise free and adequately sampled. In this work, we assess the effect of unresolvable velocity error on the final image, and present a case study example of a technique for compensating for these errors via a localized phase alignment of each of the many thousands of elemental traces that can contribute to the final image.

Introduction
Regardless of the model-building procedure we employ, there will always be remnant error in our estimation of subsurface parameters: this is a basic tenet of inverse theory. With contemporary waveform inversion procedures, these errors may only be of a scale length of tens of metres, but they will still affect our ability to form a high-resolution image. As we move towards higher-resolution imaging, whether due to the contributions to bandwidth gained from deghosting or from high frequency RTM imaging, such small-scale parameter errors will inevitably limit the final resolution of the image.

There are several classes of error that affect the image. Firstly we have the physics of the problem. In any computational technique, we make simplifying assumptions concerning the physics involved in the process, and then need a tractable numerical technique to realize that physics. Most, if not all, contemporary imaging techniques assume an acoustic earth model (i.e., all rocks are fluids, and cannot support shear propagation), and the majority of imaging algorithms deployed for very complex geological environments use shot migration algorithms for two-way propagation (such as reverse-time migration: RTM; Hemon 1978, McMechan 1983; Whitmore 1983; Baysal et al., 1983). Typically, a convolutional imaging condition is used for RTM imaging (Claerbout, 1971). The limitations of the RTM method are well understood (Yoon et al., 2004; Schleicher et al., 2007; Aarts et al., 2010; Leveille et al., 2011) and many workers have outlined techniques to compensate for the failings of the approximate physics employed. The techniques include interferometric imaging (Sava & Poliannikov, 2008), least squares migration (Schuster 1997; Nemeth et al., 1999), and deconvolutional and illumination compensated imaging conditions. More recently, some workers have moved to address the issue of residual model error via phase or trim-static alignment of individual image contributions (‘optical stacking’ or ‘adaptive optics’: e.g., Etgen et al., 2014a, b; Albertin and Zhang 2014; Jones et al., 2015). It is this aspect that we consider in this work.

In its simplest form, the convolutional imaging condition for two-way acoustic migration produces four image contributions, not all of which may be desirable. Consider a source wavefield S, with downgoing and upcoming components S_d and S_u, respectively and a back-propagated receiver wavefield R, with upcoming and downgoing components R_u and R_d.

The convolutional imaging condition for a shot record is formed by the superposition of the source and receiver wavefield products at all coincident times integrated over time:

$$\text{Image} = S \ast R = (S_d + S_u) \ast (R_d + R_u) = S_d \ast R_u + S_d \ast R_d + S_u \ast R_u + S_u \ast R_d$$ (1)

This is followed by summation of all shot contributions (e.g., Liu et al., 2011).

For a simple reflection from one-way propagating wavefields, say illuminating a flat reflector, only the first of these terms ($S_d \ast R_u$) would represent the desired physical image: the other three terms will be undesired crosstalk terms and are non-physical (Figure 1). Conversely, if we had an overhanging interface in a medium with significant vertical velocity gradients where both the source and receiver-side wavefields turned, then the image could be formed from these turning waves reflecting from the underside of the overhang: in this case the useful contribution would be formed from the terms ($S_u \ast R_d$). Alternatively, an image

1 ION
* Corresponding author. E-mail: ian.jones@iongeo.com
DOI: 10.3997/1365-2397.2017007
of a steep event illuminated by a double bounce on the receiver-side would be formed from the terms \((S_d * R_u)\). Hence, RTM has the benefit of being able to form an image from illumination along complex travel paths, but has the downside of producing all combinations of the wavefields even when they don’t physically exist, i.e. the crosstalk noise problem.

Whereas from the theoretical standpoint we should be dividing the upcoming by the downgoing wavefields (a deconvolutional imaging condition, see for example Jones 2014), here we are forming the image by the product of the downgoing and upcoming wavefields, and then normalizing this product to emulate the desired division. In other words: approximating the desired division via a convenient, more stable, multiplication (‘mad physics’). This normalization is referred to as illumination compensation (e.g., Schleicher et al., 2007; Liu et al., 2011).

We can try to form this imaging condition more correctly with a form of inversion or deconvolution (a least-squares or deconvolutional imaging condition, e.g., Schuster 1997; Nemeth et al., 1999; Guiton et al., 2006), or separation of the pertinent upcoming and downgoing terms during migration (e.g., Xia and Rietveld, 2013; Yoon and Marfurt, 2006), but these methods tend to be expensive, so are not currently in widespread industrial use. The convolutional procedure described above results in various artefacts in the RTM image: in other words, the results of ‘mad’ physics.

In addition, and/or alternatively, we can try to suppress the resulting artefacts on the final image or in gathers created via a modified imaging condition (e.g., Sava and Fomel 2003, 2006; Fletcher et al., 2005; Xu et al., 2010; Kaelin and Carvajal, 2011; Zhang and McMechan, 2011; Xie et al., 2012; Zhou et al., 2011). The nature of the main class of artefact formation is shown in Figure 1, and for a field data example in Figure 2 (from Jones and Davison, 2014). In Figure 2a, the low-frequency background ‘image condition’ noise is seen in most places above the point where the critical angle is reached for either the downgoing or upcoming wavefields. After suppression of the noise with a Laplacean filter (Figure 2b) we can still see a pernicious class of near-vertical artefact (indicated by the yellow arrow) which occurs where there is significant lateral velocity change within a Fresnel zone scale length (because the multiplicative convolutional imaging condition is inappropriate: another manifestation of bad physics). This class of noise can be removed by filtering angle gathers (Figure 2c).

However, once we have produced a clean image and gathers, we still face the problem of resolution degradation owing to unresolved (and unresolvable) velocity error (e.g., Jones, 2010). Consequently, the final integral used to form the image, namely over each shot contribution, will suffer from image misalignment because of these small-scale velocity errors in the migration velocity model. It is a compensation scheme for these latter effects that are the subject of the remainder of this paper.

Methodology and synthetic examples

Consider the contribution to an image from a single shot gather for a simple salt diapir model. Figure 3a shows the downgoing source wavefield (in black and red) superimposed on the upgoing receiver wavefield (in grey and white) for propagation time...
shown in Figure 3c. At this stage, most of the migration noise and image artefacts have cancelled-out, producing an acceptable subsurface image. The yellow circle on each of the three images is a common point indicating the production of the image contribution (3a), its position in the partial image contribution from a single shot’s migration (3b) and in the final fully migrated image after all shot contributions have been summed (3c).

If we were now to consider just one surface location and collect all the individual shot contributions to this point, we would have what we refer to as an elemental contribution gather.

1.94 s. The product of these two wavefields constitutes the image contribution for this propagation time, and the final migrated contribution for this shot would be formed from the sum of this product over all propagation times, as shown in Figure 3b. The convolutional imaging condition has produced an image of the flat reflector for CMP locations ranging from between the shot location and the first receiver, all the way out to a location half way along the spread length. On either side of the correctly imaged flat reflector segment, we have a portion of migration response noise. Summing over all shots creates the final image, shown in Figure 4. At this stage, most of the migration noise and image artefacts have cancelled-out, producing an acceptable subsurface image. The yellow circle on each of the three images is a common point indicating the production of the image contribution (3a), its position in the partial image contribution from a single shot’s migration (3b) and in the final fully migrated image after all shot contributions have been summed (3c).
an RTM image using the correct model. Figures 4c and 4d show the model after perturbation and the associated RTM image. As expected, with these small velocity errors there is very little visible image degradation, apart from in the very shallow part of the image.

After migrating with the correct model, the image contribution gather is flat for reflectors within a Fresnel zone (Figure 5a), where events would sum to form the final image. However, for RTM using the perturbed model, we can see that the hitherto flat central portion of the gather now has a trace-to-trace jitter of about ±10 m (Figure 5b). This jitter and general distortion of the waveform, results from the small-scale velocity errors introduced into the migration model. In a real tomographic (and/or FWI) iterative model updating project, we would expect there to always be some residual (and more importantly – unresolvable) velocity error in our final model (note that the unresolvable components of the model error, manifest as jitter on the elemental gathers, will still be present even if the CRP gathers output from the migration were all flat). However, we should be able to ameliorate the resulting image degradation by performing localized wavelet shaping and alignment of these jittering traces in a sliding window, using a pilot stacked trace as a reference function, and then limiting the subsequent summation of aligned elemental waveforms to within a Fresnel zone. In this way, we could recover some of the potential image resolution lost due to both the unresolvable model error and any observable remnant model error (non-flat gathers) remaining after iterative model update.

Results for a field data example

Here we consider data from an offshore shallow water environment (courtesy of Harvest Natural Resources) where we have a complex salt canopy below a very high velocity carbonate layer: so here the salt is the low-velocity medium (Pavlov et al., 2016). Figure 6a shows the final RTM image from the production project with a colour overlay of the interval velocity model. The rugose dark-green region between 2km and 3km depth is the salt body.

Many of these contributions are useful signals (namely those that fall within a Fresnel zone of the image point), but most will be migration noise (i.e. non-physical numerical noise resulting from a combination of the shot and receiver extrapolations and subsequent imaging condition). Usually the contributions to the image from individual shots are summed ‘on the fly’ or at best in shot-offset-azimuth tiles, so as to suppress unwanted migration noise (Xia and Rietveld 2013; Tyson et al., 2015).

As a separate issue from the migration noise problem, we can assess the effect of model error (‘bad models’) on these image contribution gathers by migrating synthetic data with and without model error. To assess the effect on an elemental gather of velocity model errors, we have perturbed the model used to create the data with a checkerboard pattern with a cell size of 100*100m, and velocity perturbations of ±1%. These small-scale velocity perturbations are taken to be representative of the degree of velocity uncertainty likely to be present after a comprehensive model building exercise. Figure 4a and 4b show the velocity model used to create the synthetic shot gathers and
Now consider the location ‘A’, indicated in Figure 8, and look at the elemental image contribution gathers for the base-salt event. In this case, the 3D swath of input field data used to form this particular output imaged line comprised thousands of shot gathers, hence the image contribution gather is of many-thousand fold. In Figure 9, only the first 100 most energetic traces from the thousands of possible traces in the elemental gather are shown for a small vertical window at the base of salt, before and after phase alignment. In the display, traces are sorted in terms of energy content at the base salt reflector (rather than say offset or azimuth). From Figure 9a we can see a trace-to-trace jitter of about ±20 m on signal wavelengths of about 80 m, which is mostly removed after the phase adjusted windowed alignment (Figure 9b). Figure 10 shows the corresponding adaptive stacks of the two sets of gathers, showing an overall increase in stack amplitude. The vertical line at cross-line 1800 denotes where the elemental gather in Figure 9 is located.

Assessing the alignment results for a sub-salt reflector (location ‘B’, at about 5500 m in Figure 8), we have the elemental gathers seen in Figure 11 for the unaligned data (11a), and phase aligned data (11b). Here, the jitter in the conventional elemental gather is about ±30 m, and being deeper in the section, the waveforms are of greater wavelength – about 150 m (owing to both velocity dependent stretch and absorption of higher frequencies).
and as expected, the phase alignment procedure improves the bandwidth in the ensuing signal after stacking, as we have circumvented unnecessary destructive interference of misaligned signal energy (by about 8 dB at frequency 20 Hz) as shown in Figure 13.

Comparing Figures 10a and 10b, and also 12a and 12b, we note that in places the amplitude of events is more than doubled. A simple increase in overall amplitude could be obtained with application sliding window gain (AGC), but an AGC cannot improve the signal bandwidth. Conversely,
Discussion

It is well known that the imaging conditions used for RTM give rise to artefacts that can be ameliorated via various pre- and post-stack signal processing techniques. However, perhaps of more concern is the effect of image degradation resulting from unresolved and unresolvable velocity error. Velocity errors of a scale length comparable to the wavelength of the seismic energy being used to illuminate the subsurface can significantly limit the resolution available to the observer.

Assessing and compensating for these small errors can facilitate enhancing the images obtained during conventional RTM so as to extract the maximum amount of information available from the computational effort. However, to do this requires modification of the latter stages of the imaging process: namely the final integration over each shot migration’s contribution to the image. Although it might not yet be practical to store all the many thousands of individual elemental image contributions for post-processing, computational methods can be employed to improve the image by comparing elemental contributions to a pilot image without excessive data storage.

Unsurprisingly, the technique as presented does run the risk of enhancing remnant multiples and other coherent noise. For Kirchoff and beam techniques, we routinely apply residual multiple suppression on the migrated CRP gathers to avoid contaminating the final image, and a similar procedure could be adopted here. To achieve this, the phase alignment and coherency weighted decomposition could be performed in offset and azimuth subsets, so as to create sub-stacked gathers appropriate for treatment with Radon (or other) multiple suppression techniques.

Acknowledgements

Our sincere thanks goes to Nick Berntitas, Dave McCann, and Jacques Leveille, and to the FB reviewer for helpful suggestions for improvement of this work. Thanks also to Talisman Sinopec Energy UK and partners GdF-Suez, EON, and Idemitsu (and data owners CGG), for use of the North Sea salt diapir example, as well as to Harvest Natural Resources and Panoro Energy for permission to show the Gabon example, and to ION for permission to publish.

References

